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Abstract: - This study considers the Predator-Prey model taking the predator and the prey to be custom officers 
and vehicle smugglers respectively. For ease of computation, the numerical methods applied are the Adomian 
Decomposition Method (ADM) and the Picard Iteration Method (PIM). The results obtained via the ADM are 
compared with those from PIM. The comparison shows that both methods approximate the solutions 
effectively. Although, Adomian polynomials are required in the case of ADM unlike the PIM. 
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1 Introduction 
The Predator-Prey model represents a pair of first-
order, non-linear, differential equations mainly used 
for the description of dynamical systems in 
biological sciences in which two species interact: 
one as a predator and the other as a prey. It has a 
wide range of applications in Production 
Engineering, Economics, and so on. The equations 
were initially proposed by Lotka in the theory of 
autocatalytic reactions in 1910 [1, 2]. Lotka 
continued his research through the use of a 
Kolmogorov model, a more generalized model of 
organic systems where he used herbivore animal 
species and a plant species. In 1925, he used the 
equation to resolve predator-prey interactions which 
resulted into the predator-prey equations [3, 4]. 

Many researchers have considered the 
applications of the model to other areas such as 
social and applied sciences. In Economics, the 
predator-prey equations were used by Goodwin [5] 
in relation to theory of business economic growth 
while explaining the interactions between various 
industrial sectors.  

In terms of solvability, efficient solution methods 
need to be considered for solving the differential 
equations associated with real life problems. 
Historically, the Adomian Decomposition method 
(ADM) was introduced by Adomian in 1994 where 
it was used to solve linear and nonlinear functional 
equations [6]. The ADM has since been used by 
various researchers in many fields to solve problems 
that involve differential equations [7-13]. 

The Picard Iteration Method (PIM) was used by 
Saeed et al. [14] for linearization of system of 
differential equations. Different types of non-linear 

equations can easily be handled by the Haar wavelet 
Picard technique. Yin, Han, Song, Cao in [15], 
combined the Picard Iterative method with the 
Legendre wavelets method in order to solve Non-
linear Initial Value Problem, some computational 
work was done, while keeping the accuracy in 
check. Bobkov et al. [16] used the generalized form 
of the Picard Iterative method (PIM) to solve stiff 
problems after which they were compared to the 
conventional Picard Iterative Method. Other reviews 
on PIM include [17-21]. 
 
 
2 The Methods of Solution 
For simplicity and ease of computation, this section 
considers the basic concepts of the ADM [6-12] and 
the PIM [18-21].  
 
2.1 Adomian Decomposition Method (ADM) 
Let us consider the differential equation with F  as 
a differential operator, of the form: 

.yF g=                    (1) 

Suppose F  is decomposed as:  F L R N= + +  
then (2.1) becomes:  

y y yL R N g+ + =                                         (2) 

where L  represents an easily invertible linear 
differential operator, R  represents the remaining 
part of the linear operator, N  represents a non-
linear operator, and g  a source term (not 
necessarily a function of the dependent variable). 
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Generally, we choose ( )
n

n

dL
dx

= ⋅


, to be the nth-

order differential operator and thus its inverse 1L−  
follows as the nth-order integral operator. 

Therefore, applying the inverse linear operator 
1L−
 to both sides of (2), we have: 

( )1 1 1 1
y y yL L L g L R L N− − − −= − +                      (3) 

where 
1

yL L y φ− = −                                          (4) 
and φ  signifies the initial value. 
Therefore, (3) becomes: 

1 1( )y m x L Ry L Ny− − = − +                  (5) 
where 

1( )m x L g φ−= +  ,                             (6) 
which signifies a function obtained by integrating 
the source term ( )g x with respect to the initial 
condition(s). 

The ADM expresses the solution ( )y t  in series 
form: 

0
 .n

n
y y

∞

=

=∑                                           (7) 

Also, the non-linear term can be expressed as 
Adomian polynomials: 

0
.n

n
Ny A

∞

=

=∑                                          (8) 

The Adomian polynomials, nA  are dependent on the 

values of 0 1 2, , ,..., ny y y y  and are obtained for the 
nonlinearity ( )Ny f y=  by the formula: 

0 0

1 , 0,1, 2,...
!

n n
i

n in
i

dA N y n
n d

λ

λ
λ = =

  = =  
  
∑     (9) 

Thus, 

1 1

0 0 0
( )n n n

n n n
y x L R y L Aϕ

∞ ∞ ∞
− −

= = =

 = − +  
∑ ∑ ∑            (10) 

The associated recursive equation is: 

[ ]
0

1
1

( ) ( )
.n n n

y x x
y L Ry A

ϕ
−

+

=


= − +
              (11) 

After several iterations, the thn term series 
approximation of the differential equation is 

0
lim ( ) .

N

kN k
y y x

→∞
=

 =  
 
∑                           (12) 

 
2.2 Picard Iteration Method 

The PIM is an integral method used for 
differential equations with emphasis on the 
existence and uniqueness of solutions of the 
differential equations, hence, an equation to be 
solved by the PIM must satisfy the Lipchitz 
continuity condition. 

 
2.3 Lipschitz Continuity Condition 
A function ( , )f x y  is said to satisfy the Lipchitz 
condition with respect to y  in a region D  in the 
XY -plane, if there exists a positive constant L  
such that 

( ) ( ), ,a b a bf x y f x y L y y− ≤ −   

whenever ( , ax y ) and ( , )bx y  are in D , L  is called 

the Lipchitz constant. The PIM associated with the 
IVP: 

( )

0 0

,

( )

dy f x y
dx
y x y

 =

 =

                                        (13) 

is given as follows  [20, 21]: 

0

1 0( ) ( ) ( , ( ))
x

n n
x

x y x f t t dtφ φ+ = + ∫                   (14) 

where 1( ) ( )ny x xφ +=  and ( ) ( )ny t tφ=  . 
 
 
3 Formulation of Model Equation 
Global criminal activities such as smuggling 
exercise in Nigeria is gradually becoming deadlier 
and more puzzling as the smugglers are formulating 
new methods of bringing contraband into the 
country. This needs to be frequently checked by 
legal authorities [22]. Here, the predator-prey model 
is considered based on the following assumptions 
(A1-A4).  

Let ( )N t  be the number of vehicle smugglers at 

time, t  and ( )P t  the number (population) size of 
custom officers at time t  , then the total number of 
population at time, t  is: 

( ) ( ) ( ).M t N t P t= +                                     (15) 
Consider the following:  
A1: The population of vehicle smugglers ( )( )N t  

grows exponentially in the absence of custom 
officers. This implies that: 
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dN N
dt

α=                                         (16) 

A2: In the absence of vehicle smugglers, the size 
of custom officers decrease exponentially, hence: 

dP P
dt

γ= −                                          (17) 

A3: Growth in population size of custom officers 
is proportional to the number of death among 
vehicle smugglers. This implies that: 

dP NP
dt

δ=                                           (18)  

A4: A reduction in the population size of vehicle 
smugglers is proportional to the meeting between 
the vehicle smugglers and the custom officers. This 
implies that: 

dN NP
dt

β= −                                        (19) 

So combining equations (16-19), we have: 
dP P NP
dt
dN N NP
dt

γ δ

α β

 = − +

 = −


                            (20) 

where the constants , , , 0.α β γ δ ≥   are such that α  
and β  are  prey’s birth and death rates respectively, 
δ  and γ   represent the predator’s growth and death 
rates respectively. Solutions of differential models 
of the forms (20) can be approximated by 
numerical, and/or semi-analytical methods [23-35]. 
 
 
4 Solution to the Model 
In this subsection, the two methods of solutions 
(ADM & PIM) are used for numerical solutions of 
the Predator-prey model (20). 
 
Case 1:  
PIM -Taking the integral of both sides of equations 
(20) gives: 
 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
0

0

0

0

t

t

N t N N s N s P s ds

P t P P s N s P s ds

α β

γ δ


= + −



 = + − +

∫

∫
 

                                                                 (21)
     

 ⇒  
( ) ( )

( ) ( )

1
0

1
0

0

0 .

t

k k k k

t

k k k k

N N N N P ds

P P P N P ds

α β

γ δ

+

+


= + −



 = + − +

∫

∫
       (22)

         
For 0,1, 2, ,k =   and by using the following 
parameters in Case 1: 

( ) ( )00 4,  0 9,  0.1,
0.0014,  0.0012,  0.08,  0.1

N N P
h

α
β γ δ

= = = = 
 

= = = = 
, 

 we have the following: 
 0 04,  9N P= =  

 1 14 0.34960 ,  9 2.8692N t P t= + = +  
2 3

2
2 3

2

4 0.34960 0.014488 0.0014043
9 2.8692 1.1664 0.080246

N t t t
P t t t

 = + + −


= + + +
 

2 3

4 5
3

7 6 7 7

4 0.34960 0.014488 0.0066700
0.0012012 0.000057292
6.6561 10 1.5776 10

t t t
N t t

t t− −

 + + −


= − −
+ × + ×

 

2 3 4

3 5 6 7

9 2.8692 1.1664 0.46253 0.060519
0.0032739 0.000038035 0.0000090151

t t t t
P

t t t

 + + − −= 
+ − −  

( )

2

3 4
1

5 7 6

7 7

4 0.34960 0.014488
0.0066700 0.0012012
0.000057292 6.6561 10
1.5776 10

PIM C

t t
t t

N t
t t
t

−

−

−

 + +

− −= 
− + ×
+ ×

        

                                      (22) 

 

( )

2 3

1 4 5

6 7

9 2.8692 1.1664 0.46253
0.060519 0.0032739
0.000038035 0.0000090151 .

PIM C

t t t
P t t t

t t

−

 + + −


= − +
− −       

            (23) 

   
Similarly, the ADM is applied as follows:  

Suppose ( ) dL
dt

=  then, equation (20) becomes: 

 
LN N NP
LP P NP

α β
γ δ

= −
 = − +

 .              (24) 

According to ADM, with the series solutions 

expressed as ( )
0

k
k

N t N
∞

=

=∑ and ( )
0

k
k

P t P
∞

=

=∑ , 

equation (24) becomes:  
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( )

( )

1 1

0 0 0

1 1

0 0 0

0

0

k k k
k k k

k k k
k k k

N N L N L A

P P L P L B

α β

γ δ

∞ ∞ ∞
− −

∗
= = =

∞ ∞ ∞
− −

∗
= = =

    
= + −    

    


    = − +       

∑ ∑ ∑

∑ ∑ ∑
(25) 

where =k kA B  are Adomian Polynomials. Thus, 
simplifying (25) gives the recursive relations:  

( )
( ) ( )

0

1 1
1

0

k k k

N N

N L N L Aα β
∗

− −
+

=


= −
           (26) 

and 
( )

( ) ( )
0

1 1
1

0

k k k

P P

P L P L Bγ δ
∗

− −
+

=


= − +
 .          (27) 

Therefore, for k∈  and using the parameters as in 
Case 1, we obtain the following: 

0 04, 9N P= =   

1 10.3496 , 2.8692N t P t= =   
2 2

2 20.01448752 ,  1.166413N t P t= = , and so on. 
Thus, 

( )
( )

0 1 2 3

0 1 2 3

ADM

ADM

N t N N N N

P t P P P P

 = + + + +


= + + + +





               (28)   

( )

( )

2

1 3

4

2
1

3 4

4 0.3496 0.01448752000
0.006670004576
0.003802205997

9 2.8692 1.166412960
.

0.462592516 0.1785995671

ADM C

ADM C

t t
N t t

t

t t
P t

t t

−

−

  + +
  

= −  
  −  


 + + =    + + 
                                                                                           

            (29) 
Case 2 

Using PIM with the following parameters, we 
have: 
( ) ( )00 24,  0 11,  0.05,  0.0032,  0.2,  0.08,  1N N P hα β γ δ= = = = = = = =

  

( )

( )

2

3 4
2

5 6

7

2

3 4
2

5 6

7

24 0.35520 1.4478
2.5662 0.0087029
0.15291 0.0047518
0.000036998

11 18.920 32.855
55.774 0.35198
3.8227 0.11879
0.00092495 .

PIM C

PIM C

t t
t t

N t
t t

t

t t
t t

P t
t t

t

−

−

  + −
 

− + =  + +
 + 


 + +
 + − =  − − − 

     (30) 

 
Similarly, using ADM with the same parameter in 
Case 2, we have the solutions as follows: 

( )

( )

2 2

3

2
2

3

24 0.3552
1.447799040 ,
2.566194812

11 18.92 32.85497600
.

55.77412629

ADM C

ADM C

t
N t t

t

t t
P t

t

−

−

 + 
  

= −  
  − +  
  + + =    + + 





  

                         

(31)    
The approximate results for both cases are 

presented graphically in Fig. 1-Fig.4 as follows.  
 

 
Fig 1:     ADM vs.PIM (P-Values-Case 1) 
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Fig 2:     ADM vs. PIM (N-Values- Case 1) 

 

 
Fig. 3:     ADM vs. PIM (P-Values-Case 2) 

 

 
Fig. 4:     ADM vs. PIM (N-Values Case 2) 

 
 
4 Conclusion 
The dynamics of predator-prey model are in a 
constant cycle of growth and decline. The existence 
and growth of the predators are depended on the 
availability of the number of preys existing in the 
population and vice versa. The ADM and the PIM 
have been applied successfully in solving the 
Predator-prey model which is a system of nonlinear 
differential equation. Both methods yield good 
approximation; though, the PIM transforms the 
differential equation to its equivalent in integral 
form provided the Lipschitz continuity condition is 
satisfied. The methods can also be extended to 
nonlinear models of higher order. 
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